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FINAL TECHNICAL REPORT 
Schottky barriers, formed at metal-semiconductor interfaces, play an important role in electronic 
devices. In spite of their importance and the large effort invested in perfecting them, their detailed 
physical properties are still not fully understood. These complex regions are highly sensitive to the 
specific method of preparation, and to the concentration, distribution, and type of impurities in the 
semiconductor medium. The electronic properties of the barriers are usually obtained from the 
voltage-current and voltage-capacitance response which provide spatially averaged characteristics. 
However, the need for local characterization arises when one wishes to establish, for example, the 
local correlation between the barrier and morphology of the metal electrode, or defect and dopant 
concentration below the metal electrode. To that end, Kaiser et al. developed a novel 
characterization method, ballistic electron emission microscopy (BEEM), which proved to be a 
powerful tool to locally probe the properties of Schottky barriers just beneath the metal electrode. 
The technique utilizes a scanning tunneling microscope where electrons tunnel into the thin (10 
nm) metal electrode of the Schottky barrier. The fine beam of the tunneling electrons, several nm in 
diameter, traverses the metal ballistically, part of it, ir, is reflected back from the barrier into the 
metal electrode, and the other part, ij, is injected into the bulk of the semiconductor, where it 
diffuses towards a collector electrode. 

We have extended the BEEM technology to a Light-BEEM technology by incorporating optical 
excitations at the barrier region. Specifically, we have a beam of light incident through the partially 
transparent thin metal (gold) electrode. The illumination source was a laser diode coupled through a 
conducting optical fiber. Because of the large above-band-gap absorption, the photoexcited carriers 
will be confined to several hundred nm below the metal electrode, essentially flooding the barrier 
with electron-hole pairs. The carriers, whose lifetime is determined by the dopants and traps inside 
the barrier, generate a photovoltage that flattens the bent energy bands in the barriers. The 
flattening of the energy bands will therefore have the same lifetime as that of the photoexcited 
carriers. It is this flattening which is expected to modulate the BEEM current in our proposed 
experiments. 

Specifically, the flow of the current ij is made possible by the electric field inside the barrier 
(consider an n-type doping) which sweeps the electrons towards the bulk of the semiconductor, 
from where they diffuse to the collector electrode. The decrease of the electric field inside the 
barrier by the photoexcited carriers is therefore expected to decrease ij and increase ir, which can be 
measured by the collector electrode. To optimize the signal to noise ratio, one can first apply an 
optical excitation, next null the resulting photoinduced current by applying an external voltage, and 
then inject the BEEM electrons. Raster scanning the electron beam across a sample will therefore 
generate an image associated with the photoresponse of the barrier, just below the metal electrode. 
The image can be obtained using different excitation sources at different pulse widths and rates, 
thus providing information about the lifetime of the photoexcited carriers inside the Schottky 
barrier. 

Figure 1 is a schematic diagram of the BEEM system where a conventional scanning tunneling 
microscope injects hot carriers into the Schottky barrier consisting of a 10 nm gold electrode 
deposited on an n-type silicon substrate. A collector electrode on the other side of the sample feeds 
a preamplifier with a picoamp sensitivity, which in turn feeds the second port of a Nanoscope-III 
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system. We have built the electronics required for this experiment, including a sub-pA current 
amplifier, and integrated it into a scanning tunneling microscope. 

Figure 2 shows six BEEM images of a Au-Si interface at 0.8, 1, 1.1, 1.2, 1.3 and 1.4V applied 
between the tip and Au sample. The image shows local variations in the Schottky barrier height of 
the Si-Au interface. The Dark to light height indicates a BEEM current variation of 20 pA (first 
image) to 50 pA (last image). 

The STM tip was then replaced with an Al-coated optical fiber whose end was pulled to have an 
aperture of the order of 50 nm. A HeNe beam was focused into the fiber which was lowered toward 
the sample by the STM electronics until a tunneling current was established. The BEEM current as 
a function of voltage with and without illumination was measured, and the results shown in Fig. 3. 
The BEEM current increased in the presence of illumination, as expected. A difficulty in carrying 
out the experiment involved the bending of the optical fiber as it was raster scanned across the 
surface. In contrast to near-field optical microscopy, where the tip is hovering above the surface, 
here the metal-coated fiber has to be in virtual contact with the surface to make tunneling possible. 
The drag force, therefore, was too high to make the imaging possible. With more funding, we 
would have used a different method of illumination which is less suceptible to drag forces. Under 
these conditions, the Nanoscope-III (Digital Instruments) could deliver two images obtained 
simultaneously, one showing the morphology of the metal electrode and the other the 
photoresponse of the Schottky barrier. At this point of the research we ran out of funding (about 20 
k) and could not continue the experiment. 
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Fig. 1 Schematic of BEEM experiment. 
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Fig. 2 BEEM images of Au-Si interface at several tip-Au bias voltages. 
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Fig. 3 I-V curve of BEEM current vs. Tip-Au bias with light (red) and without light (black). 


